Machine Translation Model
BSC-LT/salamandraTA-2B
Model: BSC-LT/salamandraTA-2B
GPU: A10
Code examples
OpenAI Chat Completion
chat_completion.py
#pip install openai python-dotenv
from openai import OpenAI
from dotenv import load_dotenv
import os
load_dotenv(".env")
HF_TOKEN = os.environ["HF_TOKEN"]
BASE_URL = os.environ["BASE_URL"]
client = OpenAI(
base_url=BASE_URL + "/v1/",
api_key=HF_TOKEN
)
src_lang_code = 'Spanish'
tgt_lang_code = 'Catalan'
sentence = 'Ayer se fue, tomó sus cosas y se puso a navegar.'
prompt = f'[{src_lang_code}] {sentence} \n[{tgt_lang_code}]'
stream = False
chat_completion = client.completions.create(
model="tgi",
prompt=prompt,
stream=stream,
max_tokens=1000,
temperature=0.1, #Ajust this to fit to your needs
# top_p=0.95,
# frequency_penalty=0.2,
)
text = ""
if stream:
for message in chat_completion:
text += message.choices[0].text
print(message.choices[0].text, end="")
print(text)
else:
text = chat_completion.choices[0].text
print(text)
Generate with requests
generate.py
# pip install torch transformers python-dotenv requests
from dotenv import load_dotenv
import requests
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
load_dotenv(".env")
HF_TOKEN = os.environ["HF_TOKEN"]
BASE_URL = os.environ["BASE_URL"]
src_lang_code = 'Spanish'
tgt_lang_code = 'Catalan'
sentence = 'Ayer se fue, tomó sus cosas y se puso a navegar.'
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json"
}
prompt = f'[{src_lang_code}] {sentence} \n[{tgt_lang_code}]'
payload = { "inputs": prompt, "parameters": {}}
response = requests.post(BASE_URL + "/generate", headers=headers, json=payload)
print(response.json()["generated_text"])
Last updated